Pre & Post Partum

Mind the Gap: Diastasis Recti Abdominis and What We Don’t Know: Part I

asphalt-communication-commuter-221310

Joanna Hess, PT, DPT, PRC, WCS

Summer holidays are approaching. You’re lounging at the beach and feeling quite proud of the ruffled swimsuit that guards the battle marks of the mom bod—the wrinkly and poochy belly. On the horizon, a woman in string bikini framing her flat tummy joins the four children sitting next to you. She must be their nanny, or maybe the children were adopted, or she probably had a surrogate. But after a short conversation, she reveals that in fact is the biological mother of these children and that she carried to full term. And when you awkwardly compliment her on the restoration of her college-era body, she nonchalantly shrugs and says, “Genetics? Maybe the coconut oil that we brought back from Bali?”

As the power of airbrushed social media images expand, the Cinderella stories of mummy tummy to model abs give hope to the many moms scrolling mindlessly on our phones passing the wee hours of childcare. These stories are powerful and inspiring, but do not reflect most of our situations, nor answer many elusive questions about diastasis recti abdominus.

What is Diastasis recti abdominis and why do we care?

Diastais recti abominis (DRA) is the excessive separation between the two sides of the rectus abdominis (the six pack muscle), which creates a pooching of the belly, particularly with difficult tasks. For this blog, the background information focuses on pregnancy related DRA while the application of the information can be used for any one with DRA. During the third trimester 100% of women have a DRA, defined as a separation >2 cm below the umbilicus (1). One answer to why we care about DRA is that we want our stomachs to look normal if not flat. The wrinkly skin stomach has not reached mass popularity on the runways. Another reason we care is because DRA has been assumed to predispose a long term sequelae of breakdown in the body. The cosmetic appearance associated with DRA improves as the inter-recti distance (IRD), the width between the bellies of the rectus abdominis, decreases.

As physical therapists, we screen for DRA in order to gain a larger understanding of how the body is working together. Many of us assume that the lack of stability in the front of the body will lead to compensations in other parts of the body—primarily the diaphragm, pelvic floor, and back. Dysfunction in these areas have been documented to be higher during pregnancy and the post-partum period (2). Physical therapists regularly address DRA when patients present with low back pain (LBP), pelvic floor dysfunction, pelvic pain, and urinary incontinence (3). A couple of studies looking at post-partum women seeking medical care for abdominal pain and pelvic floor dysfunction show a higher incidence of DRA in this populations (4,5). However, this is not to say that the DRA causes or predicts these conditions.

In recent prospective studies using ultrasound assessment, the assumption that DRA correlates to pelvic floor dysfunction and low back pain (LBP) is challenged. The findings suggest no relationship but even a possible protective mechanism of DRA during pregnancy, with no difference in LBP symptoms at one year postpartum regardless of DRA status. Of course, this is a statement of generalization to a study population and does not reflect the outliers, individual predispositions and presentation.

DRA During Pregnancy

No differences were found in pelvic floor function or in urinary incontinence between women regardless of DRA status, during or after pregnancy. Women presenting with DRA in their 2nd trimester were more likely to have higher vaginal resting pressures, strong pelvic floor muscles strength, and better endurance of pelvic floor muscles. The set of women with 2nd trimester DRA had lower BMI before pregnancy and during pregnancy with trend increased general physical activity (6)

DRA Post-Partum

Interestingly, women who at 6 weeks postpartum did not have a DRA were more likely to have a pelvic organ prolapse > Stage 2 (6). DRA status (none or mild) had no relationship with low back pain at 6 months (1) and 12 months postpartum (7). This corroborates another study showing no difference for DRA in women reporting LBP and that severity of DRA does not predict intensity of LBP when present (5). Heavy lifting >20x/week was shown to be a risk factor for postpartum DRA, but not age, pre-pregnancy BMI, 2nd trimester BMI, weight gain, caesarean or vaginal delivery, abdominal circumference at 35 weeks, hypermobility (p – 0.06), cardio and strength exercise, general abdominal and pelvic floor exercise (1). From the research available, we cannot predict from a group of postpartum women with DRA who will have symptoms that affect their daily living.

Looking a Little Deeper at Diastasis Recti Abdominis

As assumptions about DRA and its relationship to long term dysfunction start to shift, what is important to identify in a DRA presentation is also changing. The literature and clinical practice related to DRA mainly looks at the IRD, or the separation between the right and left muscle bellies of the rectus abdominis However, the focus on the widening of the linea alba may be less important than the ability of the linea alba to transfer forces and contribute to the stability of the abdominal muscles (8). A wide linea alba that holds tension and stabilizes the front of the abdomen with increased intra-abdominal pressures through functional task may be more desirable than a narrow linea alba with distortions that loses force and allows abdominal pressure to push forward through functional task. A pulled-apart and taut rubber band hold tension better than a relaxed and crumpled band. The width and depth of the linea alba need to be contextualized within the individual’s posture, daily movement, and functional core adaptability. The literature has yet to identify subgroups that would likely explain why some people have DRA that self-resolve and among those who don’t, why it impacts cosmetics and function in some people and not in others, why it seems to be a protective mechanism for some pelvic floor and low back conditions and exacerbating in others.

The linea alba is often connected to the rectus abdominis because of the focus of the IRD as a marker of DRA. However, the linea alba actually is the anatomical and functional intersection of all the abdominal muscles—the rectus abdominis, the internal and external obliques, and transverse abdominis, which is seen at a microscopic level with different angles of fibers in the linea alba. In a cadaver study looking at the collagen of the linea alba without DRA, previously pregnant women had thinner linea alba, but greater widths. Females who were previously pregnant had higher ratio transverse to oblique fibers—60% for females and 37.5% for males. The female cadaver that had never been pregnant had infraumbilical fibers more similar to males (9). The small size of this study limits its application, but perhaps an increase of transverse abdominis muscle activity in the lower abdominals is represented in the higher number fibers, and that this adapted activity resolved the DRA for these women.

Hormones may possibly play a role of the development of DRA for some women, but because DRA persist well after post-partum hormones return to normal. In men, hormones are unlikely to be the primary driving cause of persistent DRAs. Women who are breastfeeding do have a higher relationship with unresolved DRA until breastfeeding is concluded (5). However, no research has been conducted on this relationship and may add to another subgroup to explain the variance of women who spontaneously resolve and others who never resolved their DRAs.

Joanna is a treating therapist at our downtown location. Stay tuned for the next installment on this topic, Mind the Gap Part II: Diastasis Recti Abdominis: What we Can do About it.

To call and make an appointment with our expert PTs call:

212- 354- 2622 (Midtown)

212-267-0240 ( Downtown)

References:

1. da Mota PG, Pascoal AG, Carita AI, Bø K. Prevalence and risk factors of diastasis recti abdominis from late pregnancy to 6 months postpartum, and relationship with lumbo-pelvic pain. Manual therapy. 2015 Feb 1; 20(1):200-5.

2. Lee DG, Lee LJ, McLaughlin L. Stability, continence and breathing: the role of fascia following pregnancy and delivery. Journal of bodywork and movement therapies. 2008 Oct 1; 12(4):333-48.

3. Keeler J, Albrecht M, Eberhardt L, Horn L, Donnelly C, Lowe D. Diastasis recti abdominis: a survey of women’s health specialists for current physical therapy clinical practice for postpartum women. Journal of Women’s Health Physical Therapy. 2012 Sep 1; 36

4. Spitznagle TM, Leong FC, Van Dillen LR. Prevalence of diastasis recti abdominis in a urogynecological patient population. International Urogynecology Journal. 2007 Mar 1; 18(3):321-8

5. Parker MA, Millar LA, Dugan SA. Diastasis Rectus Abdominis and Lumbo‐Pelvic Pain and Dysfunction‐Are They Related?. Journal of Women’s Health Physical Therapy. 2009 Jul 1; 33(2):15-22.

6. Bø K, Hilde G, Tennfjord MK, Sperstad JB, Engh ME. Pelvic floor muscle function, pelvic floor dysfunction and diastasis recti abdominis: Prospective cohort study. Neurourology and urodynamics. 2017 Mar 1; 36(3):716-21.

7. Sperstad JB, Tennfjord MK, Hilde G, Ellström-Engh M, Bø K. Diastasis recti abdominis during pregnancy and 12 months after childbirth: prevalence, risk factors and report of lumbopelvic pain. Br J Sports Med. 2016 Jun 20:bjsports-2016.

8. Lee D, Hodges PW. Behavior of the linea alba during a curl-up task in diastasis rectus abdominis: an observational study. journal of orthopaedic & sports physical therapy. 2016 Jul; 46(7):580-9.

9. Axer H, Keyserlingk DG, Prescher A. Collagen fibers in linea alba and rectus sheaths: II. Variability and biomechanical aspects. Journal of Surgical Research. 2001 Apr 1; 96(2):239-45.

10. Liaw LJ, Hsu MJ, Liao CF, Liu MF, Hsu AT. The relationships between inter-recti distance measured by ultrasound imaging and abdominal muscle function in postpartum women: a 6-month follow-up study. journal of orthopaedic & sports physical therapy. 2011 July.

11. Coldron Y, Stokes MJ, Newham DJ, Cook K. Postpartum characteristics of rectus abdominis on ultrasound imaging. Manual therapy. 2008 Apr 1;13(2):112-21.

12. Boissonnault JS, Blaschak MJ. Incidence of diastasis recti abdominis during the childbearing year. Physical therapy. 1988; 68(7):1082-6

13. Chiarello CM, Falzone LA, McCaslin KE, Patel MN, Ulery KR. The effects of an exercise program on diastasis recti abdominis in pregnant women. Journal of Women’s Health Physical Therapy. 2005 Apr 1; 29(1):11-6.

14. Benjamin DR, Van de Water AT, Peiris CL. Effects of exercise on diastasis of the rectus abdominis muscle in the antenatal and postnatal periods: a systematic review. Physiotherapy. 2014 Mar 1; 100(1):1-8.

15. Pascoal AG, Dionisio S, Cordeiro F, Mota P. Inter-rectus distance in postpartum women can be reduced by isometric contraction of the abdominal muscles: a preliminary case–control study. Physiotherapy. 2014 Dec 1; 100(4):344-8.

16. Sancho MF, Pascoal AG, Mota P, Bø K. Abdominal exercises affect inter-rectus distance in postpartum women: a two-dimensional ultrasound study. Physiotherapy. 2015 Sep 1; 101(3):286-91.

17. Litos K. Progressive therapeutic exercise program for successful treatment of a postpartum woman with a severe diastasis recti abdominis. Journal of Women’s Health Physical Therapy. 2014; 38(2):58-73.

18. Gillard S, Ryan CG, Stokes M, Warner M, Dixon J. Effects of posture and anatomical location on inter-recti distance measured using ultrasound imaging in parous women. Musculoskeletal Science and Practice. 2018 Apr 1; 34:1-7.

19. Kirk B, Elliott-Burke T. The Effect of Visceral Manipulation on Diastasis Recti Abdominis (DRA): A Case Series.

Get help now from a pelvic floor therapist.

Skip to content